Understanding the fundamental forces and particles of the universe. Electroweak symmetry breaking, heavy flavor physics, searches for physics beyond the Standard Model, matter/antimatter asymmetry, dark matter, single-photon detection, neutrino properties, dark energy, instrumentation and detector development.

At Stanford, studies of the fundamental interactions and the elementary particles are enhanced by close collaboration between the Physics Department and the SLAC National Accelerator Center. The Cryogenic Dark Matter Search (CDMS) focuses on the development and operation of new detector technologies to increase the sensitivity of searches for weakly interacting massive particles. The goal of the Enriched Xenon Experiment (EXO) is to detect "neutrinoless double-beta decay" using large amounts of xenon enriched in the isotope 136. The MINOS Experiment is a long-baseline neutrino experiment designed to observe the phenomenon of neutrino oscillations, an effect that is related to neutrino mass. The BABAR data set provides opportunities for studying matter/antimatter asymmetries (CP violation) and heavy flavor physics. SLAC plays a major role on the ATLAS experiment at the Large Hadron Collider, focusing on the pixel detector, the high-level trigger system, detector simulations and the exploration of TeV-scale physics. Opportunities also exist in advanced accelerator physics, in the study of gravity (e.g., LIGO, testing gravity at short distances), and in the exploration of dark energy with projects that include the Dark Energy Survey, the development of the Large Synoptic Survey Telescope and other projects in observational cosmology.