The Gold Standard: MINOS

Long Baseline Neutrino Experiments, The Gold Standard : MINOS 1995-2023

Jenny Thomas, Stanford 10th November 2023

The Gold Standard: MINOS Jenny Thomas, Stanford 10th November 2023

- The scientific topic
- The history
- The politics
- The money
- Construction
- The experiment
- The results
- Some unexpected developments along the way

Neutrino Oscillations

What they are and how we measure them

Pontecorvo-Maki-Nakagawa-Sakata : 1957-1967

 $c_{12}=\cos\theta_{12}, s_{12}=\sin\theta_{12}$ $\delta=CP$ violating phase

- The PMNS matrix factorises into three separate matrices
- These represent (usefully) the three discrete experimental areas of interest and measurement
- 23 = atmospheric, 13 = reactor, 12 solar
- Time evolution introduces dependence on difference of mass squareds
- We still do not know which is the heaviest! (3=normal hierarchy, 1=inverted hierarchy)

Neutrino Oscillations

What they are and how we measure them

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

Pontecorvo-Maki-Nakagawa-Sakata : 1957-1967

 $c_{12}=\cos\theta_{12}, s_{12}=\sin\theta_{12}$ $\delta=CP$ violating phase

$$|\psi(t)\rangle = \sum_{j} U_{\alpha j} e^{(-i[m_j^2/2p_\alpha]x)} |\nu_j\rangle$$

- The PMNS matrix factorises into three separate matrices
- These represent (usefully) the three discrete experimental areas of interest and measurement
- 23 = atmospheric, 13 = reactor, 12 solar
- Time evolution introduces dependence on difference of mass squareds
- We still do not know which is the heaviest! (3=normal hierarchy, 1=inverted hierarchy)

1991 cast your mind back SSC was being built in Dallas, Tx

- LEP had measured number of light neutrinos = 3
 - Radiative Corrections were being used to tease out new information from the Z mass and width
 - SSC was going to go after the Higgs
 - Only a small number of people had eyes on another anomaly....
 - Proton Decay Experiments

The conventional wisdom at the time

The Kamiokande Experiment

 In 1991 Kamiokande had shown that if neutrino oscillations were the cause of the missing atmospheric neutrinos in their water Cherenkov detector, then the Δm^2 (difference in mass squared of the two types of neutrinos) was ~10⁻² eV^2

 The Japanese funding agency took it seriously....

"The Super-Kamiokande project was approved by the Japanese Ministry of Education, Science, Sports and Culture in 1991 for total funding of approximately \$100 million."

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu}) = 1 - \sin^2 2\theta \sin^2(1.267\Delta m^2 L/E)$$

The Beginning of MINOS

The end of the SSC and the start of NuMI

- There was a call for LOIs in 1994 (3 years after the Kamiokande result) for a long baseline experiment at the planned neutrino facility (NuMI) at FNAL: there was already a short baseline experiment planned
 - COSMOS later cancelled
- There were three Eols for LBL experiments
 - Barry Barish and Doug Michael + ex-MACRO collaboration (50-60 people) (Tracker Calo, 15kT)
 - Maury Goodman + Soudan2 collaboration (about 50 people) (Tracker Calo, 1KT)
 - Stan + 0 other people (Cherenkov Detector at SLAC)
- All proposed to be sensitive to Kamiokande Δm², 700km baseline

The MINOS Experiment

1995 P-875

- MINOS was born with Stan as appointed-by-FNAL leader
- We had a competition for the name
- MINOS was the winner (Main Injector Neutrino Oscillation Search), for yes, we did not know for sure they existed yet!
- And we got a logo! courtesy Angela M. Gonzales, FNAL
- Beam would point at Soudan, Mn

- Huge \$\$\$ contribution from U.Minn made that happen and helped the decision along
- Original 15 kton detector reduced to 5kt
- Detector \$50M Beam \$70M

 Produce muon neutrinos to check if they were disappearing

The NuMI Beam

An integral part of the MINOS story

Accelerator Neutrino Disappearance The simplest experiment

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu}) = 1 - \sin^2 2\theta \sin^2(1.267\Delta m^2 L/E)$$

Jenny Thomas 2011

Accelerator Neutrino Disappearance The simplest experiment

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu}) = 1 - \sin^2 2\theta \sin^2 (1.267 \Delta m^2 L / E)$$

Accelerator Neutrino Disappearance The simplest experiment

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu}) = 1 - \sin^2 2\theta \sin^2(1.267 \Delta m^2 L / E)$$

Baltay Review 1998

a near catastrophic experience

- Super-K first result showed potential for Δm² to be well below 10⁻³eV²
- It was asserted in the review that we would not be sensitive, and therefore should be cancelled
- Huge difference from Kamiokande result!
- Super-K people on the review team!!
- Luckily, Charlie came to his senses.....

Ground Breaking Day, 1999

Ground Breaking Day

UNIVERSITY OF MINNESOTA

Construction 1999-2003

- Lehman reviews every 6 months
- Both detector and beam projects
- Beam was discovered to need a re-design
- 3 year delay resulted in beam delivery

Developments unforeseen, 2002 Art came to the Soudan Mine

The MINOS/MINOS+ Experiment

On time, on budget! (beam was late)

U V 2.54 cm Fe plancs 46.45 Extruded PS soint. 4.1 x 1 cm³ WLS fiber Clear Fiber cable Multi-anode PMT

- MINOS had two functionally identical, magnetised, tracking, sampling calorimeters.
 - Can distinguish muon charge from the curvature.
- Exposed to the NuMI beam at Fermilab.
- MINOS+ continued the running of the MINOS detectors into the NOvA era at FNAL. 18

Three Flavour Oscillations

- MINOS was designed to measure the atmospheric scale oscillation parameters Δm_{32}^2 and $sin^2 2\theta_{23}$
 - Look for disappearance of CC v_{μ} interactions in the FD relative to ND.
 - Continue the search with MINOS+ above oscillation max

MINOS 2006

MINOS 2008

MINOS 2011

MINOS 2013

 MINOS dominated the neutrino oscillation parameter measurement for 6-7 years before T2K came online.

Developments unforeseen The best looking building on FNAL site

Developments unforeseen

electron neutrino appearance

- Stan pioneered measuring electron neutrino appearance in the MINOS detector
- 1" thick steel planes and 4cm wide scintillator strips could be turned into a great electron detector!
- Development of LEM (Library Event Matching) enabled the analysis, an early precursor to ML

intentionation of Floreneuropecie Slowers on a Hindrash Slowers

Randey Wejcida Randers Carvority 1998

molacias

This area discovery the preservative of different energy protocol, of the MIND'S detector for deputies of supervise discovery protocol or she load in a servation generated had only deputies. New specifically, we consider door energy.

- a) Another by an end of the boother of a standard Ne/VE wide hard beaut [WIII].
- to Sandy by to up on up confidence is caucing with Estheord by a me of 2"3
- at Sometway to we way modifiation at low wampers (Eq. 440.637)

We calculate for each contigoration becoming incomes x_0 (or x_0) and x_0 , which are, respectively, efficiencies for identification of x_0 , x_0 , including from $x_0 \rightarrow x_0$ (e.g.) coefficiency incoming to prove the closed base around a formula of the cost of x_0 and x_0 . When Rangeman income in the first of the cost of x_0 is x_0 in the base provide all the cost of x_0 is x_0 in the base provide all the cost of x_0 is x_0 in the base provide all the cost of x_0 is the base provide all the cost of x_0 in the base provide all the cost of x_0 is the base provide all the cost of x_0 is the base provide all the cost of x_0 in the base provide all the cost of x_0 is the base provide all the cost of x_0 in the base provide all the cost of x_0 .

4. = (1 +1)4, 194;

where as and so are the probabilities that beam w_{0} or v_{1} will give an event passing of the case and v_{1} is the faction of v_{0} 's called tensor. Note that as present v_{0} will become of different energy spectrum for v_{0} 's them there two distinct sources. We also us for cath configuration and for each test independently as on to give a section are distingt for the configuration.

The number of signal column, N₄, will be given by

where $A = \sin^2 \left(\frac{1.27 - A \cos^2 + L}{E_c} \right)$ and ≈ 1.22 for large $A \cos^2 \cos^2$

This reported comber of background secure No. is pirce by

My - ron with expected last solution being (1, N.,

The WE need from Enderson-synode to 1.28 w and that minimum desocration or \$20, at 900 CL, is given by

Note that the set of CO total new any error because one sample of v₀'s contains NC events, and out efficiencies are calculated with the all v₀ sample.

- MINOS and T2K had similar precision the value of the product 2sin²(2θ₁₃)sin²θ₂₃ was lower for MINOS
- Daya Bay came online in 2012 and made the definitive measurement

Developments unforeseen, 2011 No-one expected a fire in the mine!

Developments unforeseen

No-one expected such a great clean up operation!

Developments unforeseen, 2011

26

That neutrinos might go faster than light!!!

The New York Times

Particles Faster Than the Speed of Light? Not So Fast, Some Say

- MINOS was encouraged with \$\$ to remake their old measurement
- V_V = C ± 1x10⁻⁶ *Phys.Rev.D* 92 (2015) 5, 052005
- MINOS best measurement existing of actual travel time of the neutrino

Neutrino time-travel jokes have proliferated on the Internet. Example: "We don't serve faster-than-light neutrinos here," said the bartender. A neutrino walks into a bar.

Developments Unforeseen

The power of the 2 detector sterile neutrino search

- MINOS is sensitive to three sterile neutrino parameters
 - + θ_{24} , θ_{34} and $\Delta m^2{}_{41}$
- Oscillations visible in ND also have a measurable effect in the FD
- Low Δm²₄₁ only affects FD
- High Δm²₄₁ causes rapid oscillations in the ND and a constant deficit in FD
- Using covariance matrix to constrain the signal allowed in both detectors means there is nowhere to hide in such an experiment over large parameter range

Unitarity and Disappearance Is there any room for a 4th neutrino?

- Previous experiments looked for v_µ disappearance but with only one detector
- MINOS/MINOS+ put a large foot print on this plot using newly realised power of the 2 detector covariance technique to weigh in with some very large exclusions
- Blue area was the theorists attempt to combine all existing "positive hints" of the day onto this parameter space
- Clearly, all ruled out

Sterile Neutrinos

They just wont go away

- MINOS/MINOS+ when combined with Daya Bay and Bugey3 reactor experiments, transforms the disappearance parameter space to the appearance parameter space
- at 90% everything observed was ruled out

Cross Sections

No neutrino experiment would be complete without

- MINOS contributed cross sections measurements with its near detector across large range of energy
- Dominates still between 10-50 GeV

Cross Sections

No modern experiment would be complete without

 MINOS contributed cross sections measurements with its near detector across large range of energy

The Numbers

- 250 collaborators (at the peak)
- 10 years from proposal to beam (1995-2005)
- 11 years to collect data (2006-2016)
- 8 Targets (8 MINOS, 1 NOVA)
- 4 horns
- 4 FNAL Directors
- 5 Co-Spokespeople
- 42 papers (so far...)

Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit #9							
MINOS+ Collaboration • P. Adamson (Fermilab) et al. (Oct 17, 2017)							
Published in: Phys.Rev.Lett. 122 (2019) 9, 091803 • e-Print: 1710.06488 [hep-ex]							
🔓 pdf	@ links	& DOI	⊡ cite	🕞 claim	a reference search	Ð	198 citations

The Numbers

63

2008 paper : 42 individuals moved into academia

FERMILAB-PUB-08-168-E, BNL-xxxx, arXiv:hep-ex/0806.2237

Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam

P. Adamson,^{*} C. Andreopoulos,²² K. E. Arms,¹⁸ R. Armstrong,¹² D. J. Auty,²⁶ D. S. Ayres,¹ B. Baller,⁹ P. D. Barnes Jr.,¹⁶ G. Barr,²⁰ W. L. Barrett,³¹ B. R. Becker,¹⁸ A. Belias,²² R. H. Bernstein,⁹ D. Bhattacharya,³¹ M. Bishai,⁴ A. Blake,⁶ G. J. Bock,⁹ J. Boehm,²⁰ D. J. Boehnlein,⁹ D. Bogert,⁹ C. Bower,¹² E. Buckley-Geer,⁹ S. Cavanaugh,¹⁰ J. D. Chapman,⁶ D. Cherdack,²⁹ S. Childress,⁹ B. C. Choudhary,⁹ J. H. Cobb,²⁰ S. J. Coleman,³² A. J. Culling,⁶ J. K. de Jong,¹¹ M. Dierckxsens,⁴ M. V. Diwan,⁴ M. Dorman,^{17,23} S. A. Dytman,²¹ C. O. Escobar,⁷ J. J. Evans,^{17,21} E. Falk Harris,²⁶ G. J. Feldman,¹⁰ M. V. Frohne,³ H. R. Gallagher,²⁹ A. Godley,²⁴ M. C. Goodman,¹ P. Gouffon,²³ R. Gran,¹³ E. W. Grashorn,¹⁸ N. Grossman,⁹ K. Grzelak,^{30, 32} A. Habig,¹⁹ D. Harris,⁹ P. G. Harris,²⁴ J. Hartnell,^{26,22} R. Hatcher,⁹ K. Heller,¹⁸ A. Himmel,⁵ A. Holin,¹⁷ J. Hylen,⁹ G. M. Irwin,²¹ M. Ishitsuka,¹² D. E. Jaffe,⁴ C. James,⁹ D. Jensen,⁹ T. Kafka,²⁹ S. M. S. Kasahara,¹⁸ J. J. Kim,²⁴ M. S. Kim,²¹ G. Koizumi,⁹ S. Kopp,²⁸ M. Kordosky,^{22,17} D. J. Koskinen,¹⁷ S. K. Kotelnikov,¹⁵ A. Kreymer,⁹ S. Kumaratunga,¹⁸ K. Lang,²⁸ J. Ling,²⁴ P. J. Litchfield,¹⁸ R. P. Litchfield,²⁰ L. Loiacono,²⁸ P. Lucas,⁹ J. Ma,²⁸ W. A. Mann,²⁹ A. Marchionni,⁸ M. L. Marshak,¹⁸ J. S. Marshall,⁸ N. Mayer,¹² A. M. McGowan,^{1,18} J. R. Meier,¹⁸ G. I. Merzon,¹⁵ M. D. Messler,¹² C. J. Metelko,²² D. G. Michael,^{5,*} J. L. Miller,^{14,*} W. H. Miller,¹⁸ S. R. Mishra,²⁴ C. D. Moore,⁵ J. Morfin,⁹ L. Muslem,⁸ S. Mufson,¹³ S. Murgia,²⁵ J. Musser,¹² D. Naples,²² J. K. Nelson,³² H. B. Newman,⁵ R. J. Nichol,¹⁷ T. C. Nicholls,²² J. P. Ochoa-Ricoux,⁵ W. P. Oliver,²⁹ R. Ospanov,²⁶ J. Paley,¹² V. Paolone,²¹ A. Para,⁹ T. Patzak,⁸ Z. Pavlović,²⁸ G. Pawloski,²⁵ G. F. Pearce,⁷² C. W. Peck,⁵ E. A. Peterson,¹⁸ D. A. Petyt,¹⁸ R. Pittam,²⁰ R. K. Plunkett,⁹ A. Rahaman,²⁴ R. A. Rameika,⁹ T. M. Raufer,²² B. Rebel,⁹ J. Reichenbacher,¹ P. A. Rodrigues,²⁰ C. Rosenfeld,¹⁴ H. A. Rubin,¹¹ K. Ruddick,¹⁸ V. A. Ryabov,¹⁵ M. C. Sanchez,^{1,10} N. Saoulidou,⁹ J. Schneps,²⁸ P. Schreiner,⁵ S.-M. Seun,¹⁰ P. Shanahan,⁹ W. Smart,⁹ C. Smith,¹⁷ A. Sousa,²⁰ B. Speakman,¹⁸ P. Stamoulis,² M. Strait,¹⁸ P. Symes,²⁶ N. Tagg,²⁰ R. L. Talaga,¹ M. A. Tavera,²⁶ J. Thomas,¹⁷ J. Thompson,^{21,*} M. A. Thomson,⁶ J. L. Thron,¹ G. Tinti,²⁰ I. Trostin,¹³ V. A. Tsarev,¹⁵ G. Tzanakos,² J. Urheim,¹² P. Vahle,^{22,17} B. Viren,⁴ C. P. Ward,⁶ D. R. Ward,⁶ M. Watabe,²⁷ A. Weber,²⁰ R. C. Webb,²⁷ A. Wehmann,⁹ N. West,²⁰ C. White,¹¹ S. G. Wojcicki,²⁰ D. M. Wright,¹⁶ T. Yang,²⁵ M. Zois,² K. Zhang,⁴ and R. Zwaska⁹ (The MINOS Collaboration)

Sterile Neutrinos

 MINOS delivered a 99%C.L limit in the supplementary information data release.

The cross check

Is the MiniBooNE result consist with oscillations at all?

The NuMI Beam

