A Different Kind of Long Baseline:

Reactor Neutrino Oscillation Experiments

--When Nature is kind*--

Giorgio Gratta Physics Department, Stanford University

The Stan Wojcicki Scientific Symposium Stanford, Nov 10, 2023

* In my career I have seen Nature being kind thrice: twice with reactor neutrinos and one... you will hear from Barry about it

Nuclear reactors are very intense sources of v_e deriving from beta-decay of the neutron-rich fission fragments

Example: ²³⁵U fission

so, on average 6 n have to turn into 6 p to reach stable matter

Power/commercial reactors are generally used since only requirement is to have large power

$$\frac{200MeV}{6\overline{v}_{e}}/\frac{fission}{fission}$$

A typical large power reactor produces 3 GW_{thermal} and 6•10²⁰ antineutrinos/s

v det. at low energy is hard: but inverse β decay provides specific signature

can be detected above threshold

Indeed, neutrinos were first observed from nuclear reactors

Fred Reines (?) "fixing" a neutrino detector (circa 1953)

...and it is fair to say that the initial data was not particularly clear and, at times, confusing.

TABLE	I.	Listing	of	data.
-------	----	---------	----	-------

Run	Pile status	Length of run (seconds)	Net delayed pair rate counts/min	Accidental background rate counts/min
1	up	4000	2.56	0.84
2	up	2000	2.46	3.54
3	up	4000	2.58	3.11
4	down	3000	2.20	0.45
5	down	2000	2.02	0.15
6	down	1000	2.19	0.13

Pile up (three runs totaling 10 000 seconds): 2.55 ± 0.15 delayed counts/min.

Pile down (three runs totaling 6000 seconds): 2.14±0.13 delayed counts/min.

Difference due to the pile: 0.41 ± 0.20 delayed count/min.

F. Reines and C. L. Cowan, Jr. Phys. Rev. 92 (1953) 830

Reactors for disappearance (anti)neutrino oscillation experiments I am claiming that the "modern era" started with Chooz and Palo Verde (also, those are the last experiments not to see an oscillation signal)

We were younger... and concerned that maybe we did not understand backgrounds well enough.

Chooz managed to start data taking before the reactors were fully commissioned, this provided zero power measurements and the demonstration that the detected neutrino rate is proportional to the reactor's thermal power

The full mixing matrix is a complicated affair

$$\begin{aligned} \mathbf{U} &= \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} = \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \bullet \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \bullet \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-i\alpha/2} & 0 \\ 0 & 0 & e^{-i\alpha/2+i\beta} \end{pmatrix} \end{aligned}$$

But, the fact that there are two rather different Δm^2 allows one to write a simplified form, allowing to build some intuition:

$$P_{osc}(\nu_a \to \nu_b) = sin^2 2\theta sin^2 \left(\frac{1.27\Delta m^2 L}{E_{\nu}}\right)$$

 E_{ν} in MeV, Δm^2 in eV², L in meters (pardon the units)

→ "how difficult" the measurement is also depends on how kind Nature is

$$P_{osc}(\nu_a \to \nu_b) = sin^2 2\theta sin^2 \left(\frac{1.27\Delta m^2 L}{E_{\nu}}\right)$$

- Small θ generally makes things difficult
- But, for a broad, smooth energy spectrum, one can hit just the right $\frac{\Delta m^2 L}{E_v}$ to produce a "hole" in the middle of the spectrum.

Alas, this was not the case for Chooz or Palo Verde, with ~1km baseline

Detectors tend to be large and require extensive shielding against natural radioactivity

> **Material where neutrinos** interact and are detected (1000 tons liquid scintillator

Shielding oil (2.5 m thick, or about 2 kton)

2000 photomultipliers (20 inch diameter)

18m

14

Installing 17" and 20" PMTs in KamLAND (Summer 2000)

First KamLAND result

A fit to a simple rescaled reactor spectrum is excluded at 99.89% CL (χ^2 =43.4/19)

A. Gando et al. (KamLAND) Phys. Rev. D 83 (2011) 052002

"The oscillatory behavior of neutrino oscillation"

(we did not have the guts to use this as title of the paper (SuperK did))

This is really what happened!

Note that KamLAND measures very well Δm^2 (the position of the "hole" in the spectrum) but not so well θ_{12} (measuring absolute rates is hard)

$$\boldsymbol{P}_{osc}(\boldsymbol{\nu}_a \rightarrow \boldsymbol{\nu}_b) = sin^2 2\boldsymbol{\theta} sin^2 \left(\frac{1.27\Delta m^2 L}{E_{\nu}}\right)$$

A. Gando et al. (KamLAND) Phys. Rev. D 83 (2011) 052002

How to go after θ_{13} ? This ought to be hard, as Chooz and Palo Verde did not have a signal.

Below is an old slide about this

θ_{13} for the Neutrino Oscillation

- Key to complete the picture of the neutrino oscillation
- A fundamental parameter of the SM
- Important for future neutrino experiments

 Sensitivity goal: 0.01@90%CL for Sin²2θ₁₃

Daya Bay Experiment: Concept

- Relative measurement (far over near) to cancel Corr. Syst. Err.
 - 2 near sites, 1 far site
- Multiple modules at each site to reduce Uncorr. Syst. Err. $(1/\sqrt{N})$
 - Far: 4 modules, near: 2 modules: efficient target mass, flexibility, redundancy, cross check, ...
- ♦ Multiple muon detectors to reduce veto ineff. → goal 0.5%
 - Water Cherenkov: 2 layers

• RPC: 4 layers at the top + telescopes Stan Wojcicki Symposium - 10 Nov 2023 at the top + telescopes

And... Nature was kind again

Electron anti-neutrino disappearance: $R = 0.940 \pm 0.011$ (stat) ± 0.004 (syst)

Next Generation Experiment: JUNO

JUNO Detector and Challenges

- Mass hierarchy up to 4σ in 6 years,
- Oscillation parameters to sub-percent,
- Supernova, solar, atmospheric and geo-neutrinos (large detector)

- The very large size is required to get sufficient statistics
- The details of the reactor spectrum don't matter
- The small features require
 excellent energy resolution

JUNO Detector and Challenges

- Largest LS detector 🔿 × 20 KamLAND, × 40 Borexino
- High light yield required to obtain sufficient resolution to detect

the phase of rapid oscillations: Highest light yield \rightarrow × 2 Borexino, × 5 KamLAND

Construction will complete in 2024

Yet, not all is good

Now that we have lots of data, with ever shrinking uncertainties, there seems to be an overall shortage of (anti)neutrinos.

- The "anomaly" is at short baseline, if nothing else because there is where the statistically more powerful data is.
- A revolutionary conclusion would be that this is due to some sterile neutrino, mixing with very large Δm² and tiny angle.
- A more mundane (and, in my opinion, likely) explanation is that we do not understand the reactor flux to the few % level.
- Work in progress...

Summarizing

Thanking many colleagues and, especially, Yifang Wang and Liangjian Wen, for some of the slides