Skip to content Skip to navigation


Ph.D. Candidate:  Stanislav Fort

Research Advisor:  Surya Ganguli

Date:     Wednesday November 10, 2021
Time: 11 AM

Zoom Link:

Zoom Password: email at least 24 hours in advance for password


Title: Geometric Aspects of Deep Learning

Large deep neural networks trained with gradient descent have been extremely successful at learning solutions to a broad suite of difficult problems across a wide range of domains. Despite their tremendous success, we still do not have a detailed, predictive understanding of how they work and what makes them so effective. In this talk, I will describe recent efforts to understand the structure of deep neural network loss landscapes and how gradient descent navigates them during training. In particular, I will discuss a phenomenological approach to modeling their large-scale structure using high-dimensional geometry [1], the role of their nonlinear nature in the early phases of training [2], and its effects on ensembling, calibration, and approximate Bayesian techniques [3].


[1] Stanislav Fort, and Stanislaw Jastrzebski. “Large Scale Structure of Neural Network Loss Landscapes.” NeurIPS 2019. arXiv 1906.04724 

[2] Stanislav Fort et al. "Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel". NeurIPS 2020. arXiv 2010.15110 

[3] Stanislav Fort, Huiyi Hu, Balaji Lakshminarayanan. "Deep Ensembles: A Loss Landscape Perspective." arXiv 1912.02757


November 10, 2021 - 11:00am